
547  

Extension 3:  Vision
Text by Golan Levin

A well-known anecdote relates how, sometime in 1966, the legendary artificial intelli-
gence pioneer Marvin Minsky directed an undergraduate student to solve “the problem 
of computer vision” as a summer project.1 This anecdote is often resuscitated to illustrate 
how egregiously the difficulty of computational vision has been underestimated. 
Indeed, nearly forty years later the discipline continues to confront numerous unsolved 
(and perhaps unsolvable) challenges, particularly with respect to high-level “image 
understanding” issues such as pattern recognition and feature recognition. Nevertheless, 
the intervening decades of research have yielded a great wealth of well-understood, low-
level techniques that are able, under controlled circumstances, to extract meaningful 
information from a camera scene. These techniques are indeed elementary enough to be 
implemented by novice programmers at the undergraduate or even high-school level.

Computer vision in interactive art 

The first interactive artwork to incorporate computer vision was, interestingly enough, 
also one of the first interactive artworks. Myron Krueger’s legendary Videoplace, 
developed between 1969 and 1975, was motivated by his deeply felt belief that the entire 
human body ought to have a role in our interactions with computers. In the Videoplace 
installation, a participant stands in front of a backlit wall and faces a video projection 
screen. The participant’s silhouette is then digitized and its posture, shape, and gestural 
movements analyzed. In response, Videoplace synthesizes graphics such as small 
“critters” which climb up the participant’s projected silhouette, or colored loops drawn 
between the participant’s fingers. Krueger also allowed participants to paint lines with 
their fingers, and, indeed, entire shapes with their bodies; eventually, Videoplace offered 
more than fifty compositions and interactions. Videoplace is notable for many “firsts” in 
the history of human-computer interaction. Some of its interaction modules allowed two 
participants in mutually remote locations to participate in the same shared video space, 
connected across the network—an implementation of the first multiperson virtual 
reality, or, as Krueger termed it, an “artificial reality.” Videoplace, it should be noted, was 
developed before the mouse became the ubiquitous desktop device it is today, and was 
(in part) created to demonstrate interface alternatives to the keyboard terminals that 
dominated computing so completely in the early 1970s. 

Messa di Voce (p. 511), created by this text’s author in collaboration with Zachary 
Lieberman, uses whole-body vision-based interactions similar to Krueger’s, but 
combines them with speech analysis and situates them within a kind of projection-
based augmented reality. In this audiovisual performance, the speech, shouts, and Ra
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songs produced by two abstract vocalists are visualized and augmented in real time 
by synthetic graphics. To accomplish this, a computer uses a set of vision algorithms 
to track the locations of the performers’ heads; this computer also analyzes the 
audio signals coming from the performers’ microphones. In response, the system 
displays various kinds of visualizations on a projection screen located just behind the 
performers; these visualizations are synthesized in ways that are tightly coupled to the 
sounds being spoken and sung. With the help of the head-tracking system, moreover, 
these visualizations are projected such that they appear to emerge directly from the 
performers’ mouths.

Rafael Lozano-Hemmer’s installation Standards and Double Standards (2004) 
incorporates full-body input in a less direct, more metaphorical context. This work 
consists of fifty leather belts, suspended at waist height from robotic servomotors 
mounted on the ceiling of the exhibition room. Controlled by a computer vision-based 
tracking system, the belts rotate automatically to follow the public, turning their buckles 
slowly to face passers-by. Lozano-Hemmer’s piece “turns a condition of pure surveillance 
into an ‘absent crowd’ using a fetish of paternal authority: the belt.”2

The theme of surveillance plays a foreground role in David Rokeby’s Sorting Daemon
(2003). Motivated by the artist’s concerns about the increasing use of automated systems 
for profiling people as part of the “war on terrorism,” this site-specific installation works 
toward the automatic construction of a diagnostic portrait of its social (and racial) 
environment. Rokeby writes: “The system looks out onto the street, panning, tilting and 
zooming, looking for moving things that might be people. When it finds what it thinks 
might be a person, it removes the person’s image from the background. The extracted 
person is then divided up according to areas of similar colour. The resulting swatches of 
colour are then organized [by hue, saturation and size] within the arbitrary context of 
the composite image” projected onsite at the installation’s host location.3

Another project themed around issues of surveillance is Suicide Box, by the Bureau 
of Inverse Technology (Natalie Jeremijenko and Kate Rich). Presented as a device for 
measuring the hypothetical “despondency index” of a given locale, the Suicide Box
nevertheless records very real data regarding suicide jumpers from the Golden Gate 
Bridge. According to the artists, “The Suicide Box is a motion-detection video system, 
positioned in range of the Golden Gate Bridge, San Francisco, in 1996. It watched 
the bridge constantly and when it recognized vertical motion, captured it to a video 
record. The resulting footage displays as a continuous stream the trickle of people 
who jump off the bridge. The Golden Gate Bridge is the premiere suicide destination 
in the United States; a 100-day initial deployment period of the Suicide Box recorded 17 
suicides. During the same time period the Port Authority counted only 13.”4 Elsewhere, 
Jeremijenko has explained that “the idea was to track a tragic social phenomenon 
which was not being counted—that is, doesn’t count.”5 The Suicide Box has met with 
considerable controversy, ranging from ethical questions about recording the suicides, 
to disbelief that the recordings could be real. Jeremijenko, whose aim is to address the 
hidden politics of technology, has pointed out that such attitudes express a recurrent 
theme—“the inherent suspicion of artists working with material evidence”—evidence 
obtained, in this case, with the help of machine vision-based surveillance.
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Considerably less macabre is Christian Möller’s clever Cheese installation (2003), 
which the artist developed in collaboration with the California Institute of Technology 
and the Machine Perception Laboratories of the University of California, San Diego. 
Motivated, perhaps, by the culture shock of his relocation to Hollywood, the German-
born Möller directed “six actresses to hold a smile for as long as they could, up to one and 
a half hours. Each ongoing smile is scrutinized by an emotion recognition system, and 
whenever the display of happiness fell below a certain threshold, an alarm alerted them 
to show more sincerity.”6 The installation replays recordings of the analyzed video on 
six flat-panel monitors, with the addition of a fluctuating graphic level-meter to indicate 
the strength of each actress’ smile. The technical implementation of this artwork’s 
vision-based emotion recognition system is quite sophisticated.

As can be seen from these examples, artworks employing computer vision 
range from the highly formal and abstract to the humorous and sociopolitical. They 
concern themselves with the activities of willing participants, paid volunteers, or 
unaware strangers. They track people of interest at a wide variety of spatial scales, 
from extremely intimate studies of their facial expressions, to the gestures of their 
limbs, to the  movements of entire bodies. The examples above represent just a small 
selection of notable works in the field and of the ways in which people (and objects) 
have been tracked and dissected by video analysis. Other noteworthy artworks that 
use machine vision include Marie Sester’s Access; Joachim Sauter and Dirk Lüsebrink’s 
Zerseher and Bodymover; Scott Snibbe’s Boundary Functions and Screen Series; Camille 
Utterback and Romy Achituv’s TextRain; Jim Campbell’s Solstice; Christa Sommerer 
and Laurent Mignonneau’s A-Volve; Danny Rozin’s Wooden Mirror; Chico MacMurtrie’s 
Skeletal Reflection, and various works by Simon Penny, Toshio Iwai, and numerous 
others. No doubt many more vision-based artworks remain to be created, especially as 
these techniques gradually become incorporated into developing fields like physical 
computing and robotics. 

Elementary computer vision techniques

To understand how novel forms of interactive media can take advantage of computer 
vision techniques, it is helpful to begin with an understanding of the kinds of problems 
that vision algorithms have been developed to address, and of their basic mechanisms 
of operation. The fundamental challenge presented by digital video is that it is 
computationally “opaque.” Unlike text, digital video data in its basic form—stored solely 
as a stream of rectangular pixel buffers—contains no intrinsic semantic or symbolic 
information. There is no widely agreed upon standard for representing the content of 
video, in a manner analogous to HTML, XML, or even ASCII for text (though some new 
initiatives, notably the MPEG-7 description language, may evolve into such a standard 
in the future). As a result, a computer, without additional programming, is unable to 
answer even the most elementary questions about whether a video stream contains 
a person or object, or whether an outdoor video scene shows daytime or nighttime, et 
cetera. The discipline of computer vision has developed to address this need.
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Many low-level computer vision algorithms are geared to the task of distinguishing 
which pixels, if any, belong to people or other objects of interest in the scene. Three 
elementary techniques for accomplishing this are frame differencing, which attempts 
to locate features by detecting their movements; background subtraction, which 
locates visitor pixels according to their difference from a known background scene; 
and brightness thresholding, which uses hoped-for differences in luminosity between 
foreground people and their background environment. These algorithms, described in 
the following examples, are extremely simple to implement and help constitute a base 
of detection schemes from which sophisticated interactive systems may be built. 

Example 1:  Detecting motion (p. 556)
The movements of people (or other objects) within the video frame can be detected 
and quantified using a straightforward method called frame differencing. In this 
technique, each pixel in a video frame F1 is compared with its corresponding pixel in the 
subsequent frame F2. The difference in color and/or brightness between these two pixels 
is a measure of the amount of movement in that particular location. These differences 
can be summed across all of the pixels’ locations to provide a single measurement 
of the aggregate movement within the video frame. In some motion detection 
implementations, the video frame is spatially subdivided into a grid of cells, and the 
values derived from frame differencing are reported for each of the individual cells. For 
accuracy, the frame differencing algorithm depends on relatively stable environmental 
lighting, and on having a stationary camera (unless it is the motion of the camera that is 
being measured). 

Example 2:  Detecting presence (p. 557)
A technique called background subtraction makes it possible to detect the presence 
of people or other objects in a scene, and to distinguish the pixels that belong to them 
from those that do not. The technique operates by comparing each frame of video 
with a stored image of the scene’s background, captured at a point in time when the 
scene was known to be empty. For every pixel in the frame, the absolute difference is 
computed between its color and that of its corresponding pixel in the stored background 
image; areas that are very different from the background are likely to represent objects 
of interest. Background subtraction works well in heterogeneous environments, but it 
is very sensitive to changes in lighting conditions and depends on objects of interest 
having sufficient contrast against the background scene. 

Example 3:  Detection through brightness thresholding (p. 559)
With the aid of controlled illumination (such as backlighting) and/or surface treatments 
(such as high-contrast paints), it is possible to ensure that objects are considerably darker 
or lighter than their surroundings. In such cases objects of interest can be distinguished 
based on their brightness alone. To do this, each video pixel’s brightness is compared to a 
threshold value and tagged accordingly as foreground or background. 
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Example 1. Detects motion by comparing each video frame to the previous frame. The change is visualized 
and is calculated as a number.

Example 2. Detects the presence of someone or something in front of the camera by comparing each video 
frame with a previously saved frame. The change is visualized and is calculated as a number.

Example 3. Distinguishes the silhouette of people or objects in each video frame by comparing each pixel
to a threshold value. The circle is filled with white when it is within the silhouette.

Example 4. Tracks the brightest object in each video frame by calculating the brightest pixel. The light from 
the flashlight is the brightest element in the frame, therefore the circle follows it. 
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Example 4:  Brightness tracking (p. 560)
A rudimentary scheme for object tracking, ideal for tracking the location of a single 
illuminated point (such as a flashlight), finds the location of the single brightest pixel 
in every fresh frame of video. In this algorithm, the brightness of each pixel in the 
incoming video frame is compared with the brightest value yet encountered in that 
frame; if a pixel is brighter than the brightest value yet encountered, then the location 
and brightness of that pixel are stored. After all of the pixels have been examined, 
then the brightest location in the video frame is known. This technique relies on an 
operational assumption that there is only one such object of interest. With trivial 
modifications, it can equivalently locate and track the darkest pixel in the scene, or track 
multiple, differently colored objects.

Of course, many more software techniques exist, at every level of sophistication, for 
detecting, recognizing, and interacting with people and other objects of interest. Each 
of the tracking algorithms described above, for example, can be found in elaborated 
versions that amend its various limitations. Other easy-to-implement algorithms can 
compute specific features of a tracked object, such as its area, center of mass, angular 
orientation, compactness, edge pixels, and contour features such as corners and cavities. 
On the other hand, some of the most difficult to implement algorithms, representing 
the cutting edge of computer vision research today, are able (within limits) to recognize 
unique people, track the orientation of a person’s gaze, or correctly identify facial 
expressions. Pseudocodes, source codes, or ready-to-use implementations of all of these 
techniques can be found on the Internet in excellent resources like Daniel Huber’s 
Computer Vision Homepage, Robert Fisher’s HIPR (Hypermedia Image Processing 
Reference), or in the software toolkits discussed on pages 554-555.

Computer vision in the physical world

Unlike the human eye and brain, no computer vision algorithm is completely general, 
which is to say, able to perform its intended function given any possible video input. 
Instead, each software tracking or detection algorithm is critically dependent on certain 
unique assumptions about the real-world video scene it is expected to analyze. If any 
of these expectations is not met, then the algorithm can produce poor or ambiguous 
results or even fail altogether. For this reason, it is essential to design physical conditions 
in tandem with the development of computer vision code, and to select the software 
techniques that are most compatible with the available physical conditions. 

Background subtraction and brightness thresholding, for example, can fail if the 
people in the scene are too close in color or brightness to their surroundings. For these 
algorithms to work well, it is greatly beneficial to prepare physical circumstances that 
naturally emphasize the contrast between people and their environments. This can be 
achieved with lighting situations that silhouette the people, for example, or through 
the use of specially colored costumes. The frame-differencing technique, likewise, fails 
to detect people if they are stationary. It will therefore have very different degrees of 
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success detecting people in videos of office waiting rooms compared with, for instance, 
videos of the Tour de France bicycle race. 

A wealth of other methods exist for optimizing physical conditions in order to 
enhance the robustness, accuracy, and effectiveness of computer vision software. Most 
are geared toward ensuring a high-contrast, low-noise input image. Under low-light 
conditions, for example, one of the most helpful such techniques is the use of infrared 
(IR) illumination. Infrared, which is invisible to the human eye, can supplement the 
light detected by conventional black-and-white security cameras. Using IR significantly 
improves the signal-to-noise ratio of video captured in low-light circumstances, and 
can even permit vision systems to operate in (apparently) complete darkness. Another 
physical optimization technique is the use of retroreflective marking materials, such 
as those manufactured by 3M Corporation for safety uniforms. These materials are 
remarkably efficient at reflecting light back toward their source of illumination and are 
ideal aids for ensuring high-contrast video of tracked objects. If a small light is placed 
coincident with the camera’s axis, objects with retroreflective markers will be detected 
with tremendous reliability.

Finally, some of the most powerful physical optimizations for machine vision can be 
made without intervening in the observed environment at all, through well-informed 
selections of the imaging system’s camera, lens, and frame-grabber components. To take 
one example, the use of a “telecentric” lens can significantly improve the performance 
of certain kinds of shape-based or size-based object recognition algorithms. For this 
type of lens, which has an effectively infinite focal length, magnification is nearly 
independent of object distance. As one manufacturer describes it, “an object moved 
from far away to near the lens goes into and out of sharp focus, but its image size is 
constant. This property is very important for gauging three-dimensional objects, or 
objects whose distance from the lens is not known precisely.”7 Likewise, polarizing filters 
offer a simple, nonintrusive solution to another common problem in video systems, 
namely glare from reflective surfaces. And a wide range of video cameras are available, 
optimized for conditions like high-resolution capture, high-frame-rate capture, short 
exposure times, dim light, ultraviolet light, and thermal imaging. It pays to research 
imaging components carefully.

As we have seen, computer vision algorithms can be selected to best negotiate the 
physical conditions presented by the world, and likewise, physical conditions can be 
modified to be more easily legible to vision algorithms. But even the most sophisticated 
algorithms and the highest-quality hardware cannot help us find meaning where 
there is none, or track an object that cannot be described in code. It is therefore worth 
emphasizing that some visual features contain more information about the world, and 
are also more easily detected by the computer, than others. In designing systems to 
“see for us,” we must not only become freshly awakened to the many things about the 
world that make it visually intelligible to us, but also develop a keen intuition about 
their ease of computability. The sun is the brightest point in the sky, and by its height 
also indicates the time of day. The mouth cavity is easily segmentable as a dark region, 
and the circularity of its shape is also closely linked to vowel sound. The pupils of the eye 
emit an easy-to-track infrared retroreflection, and they also indicate a person’s direction 
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of gaze. Simple frame differencing makes it easy to track motion in a video. The Suicide 
Box (p. 548) uses this technique to dramatic effect.

Tools for computer vision

It can be a rewarding experience to implement machine vision techniques from scratch 
using code such as the examples provided in this section. To make this possible, the 
only requirement of one’s software development environment is that it should provide 
direct read-access to the array of video pixels obtained by the computer’s frame-
grabber. Hopefully, the example algorithms discussed earlier illustrate that creating 
low-level vision algorithms from first principles isn’t so hard. Of course, a vast range of 
functionality can also be obtained immediately from readily available solutions. Some of 
the most popular machine vision toolkits take the form of plug-ins or extension libraries 
for commercial authoring environments geared toward the creation of interactive 
media. Such plug-ins simplify the developer’s problem of connecting the results of the 
vision-based analysis to the audio, visual, and textual affordances generally provided by 
such authoring systems.

Many vision plug-ins have been developed for Max/MSP/Jitter, a visual 
programming environment that is widely used by electronic musicians and VJs. 
Originally developed at the Parisian IRCAM research center in the mid-1980s and now 
marketed commercially by the California-based Cycling’74 company, this extensible 
environment offers powerful control of (and connectivity between) MIDI devices, real-
time sound synthesis and analysis, OpenGL-based 3D graphics, video filtering, network 
communications, and serial control of hardware devices. The various computer vision 
plug-ins for Max/MSP/Jitter, such as David Rokeby’s SoftVNS, Eric Singer’s Cyclops, and 
Jean-Marc Pelletier’s CV.Jit, can be used to trigger any Max processes or control any 
system parameters. Pelletier’s toolkit, which is the most feature-rich of the three, is also 
the only one that is freeware. CV.Jit provides abstractions to assist users in tasks such 
as image segmentation, shape and gesture recognition, motion tracking, etc., as well as 
educational tools that outline the basics of computer vision techniques.

Some computer vision toolkits take the form of stand-alone applications and are 
designed to communicate the results of their analyses to other environments (such as 
Processing, Director, or Max) through protocols like MIDI, serial RS-232, UDP, or TCP/IP 
networks. BigEye, developed by the STEIM (Studio for Electro-Instrumental Music) group 
in Holland, is a simple and inexpensive example. BigEye can track up to 16 objects of 
interest simultaneously, according to their brightness, color, and size. The software 
allows for a simple mode of operation, in which the user can quickly link MIDI messages 
to many object parameters, such as position, speed, and size. Another example is the 
powerful EyesWeb open platform, a free system developed at the University of Genoa. 
Designed with a special focus on the analysis and processing of expressive gesture, 
EyesWeb includes a collection of modules for real-time motion tracking and extraction 
of movement cues from human full-body movement; a collection of modules for 
analysis of occupation of 2D space; and a collection of modules for extraction of features 
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from trajectories in 2D space. EyesWeb’s extensive vision affordances make it highly 
recommended for students. 

The most sophisticated toolkits for computer vision generally demand greater 
familiarity with digital signal processing, and require developers to program in 
compiled languages like C++ rather than languages like Java, Lingo, or Max. The Intel 
Integrated Performance Primitives (IPP) library for example, is among the most general 
commercial solutions available for computers with Intel-based CPUs. The OpenCV 
library, by contrast, is a free, open source toolkit with nearly similar capabilities and a 
tighter focus on commonplace computer vision tasks. The capabilities of these tools, as 
well as all of those mentioned above, are continually evolving.

Processing includes a basic video library that handles getting pixel information 
from a camera or movie file, as demonstrated in the examples included with this text. 
The computer vision capabilities of Processing are extended by libraries like Myron, 
which handles video input and has basic image processing capabilities. Other libraries 
connect Processing to EyesWeb and OpenCV. They can be found on the libraries page of 
the Processing website: www.processing.org/reference/libraries.

Conclusion 

Computer vision algorithms are increasingly used in interactive and other computer-
based artworks to track people’s activities. Techniques exist that can create real-time 
reports about people’s identities, locations, gestural movements, facial expressions, gait 
characteristics, gaze directions, and other characteristics. Although the implementation 
of some vision algorithms requires advanced understanding of image processing and 
statistics, a number of widely used and highly effective techniques can be implemented 
by novice programmers in as little as an afternoon. For artists and designers who are 
familiar with popular multimedia authoring systems like Macromedia Director and 
Max/MSP/Jitter, a wide range of free and commercial toolkits are also available that 
provide ready access to more advanced vision functionalities. 
  Since the reliability of computer vision algorithms is limited according to the 
quality of the incoming video scene and the definition of a scene’s quality is determined 
by the specific algorithms that are used to analyze it, students approaching computer 
vision for the first time are encouraged to apply as much effort to optimizing their 
physical scenario as they do to their software code. In many cases, a cleverly designed 
physical environment can permit the tracking of phenomena that might otherwise 
require much more sophisticated software. As computers and video hardware become 
more available, and software-authoring tools continue to improve, we can expect to 
see the use of computer vision techniques increasingly incorporated into media-art 
education and into the creation of games, artworks, and many other applications.

Notes
1. http://mechanism.ucsd.edu/~bill/research/mercier/2ndlecture.pdf. 
2. http://www.fundacion.telefonica.com/at/rlh/eproyecto.html. 
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3.  http://homepage.mac.com/davidrokeby/sorting.html. 
4.  http://www.bureauit.org/sbox.
5.  http://www.wired.com/news/culture/0,1284,64720,00.html. 
6.  http://www.christian-moeller.com. 
7. http://www.mellesgriot.com/pdf/pg11-19.pdf.

Code

Video can be captured into Processing from USB cameras, IEEE 1394 cameras, or video 
cards with composite or S-video input devices. The examples that follow assume you 
already have a camera working with Processing. Before trying these examples, first get 
the examples included with the Processing software to work. Sometimes you can plug 
a camera in to your computer and it will work immediately. Other times it’s a difficult 
process involving trial-and-error changes. It depends on the operating system, the 
camera,  and how the computer is configured. For the most up-to-date information, refer 
to the Video reference on the Processing website: www.processing.org/reference/libraries.

Example 1:  Detecting motion

// Quantify the amount of movement in the video frame using frame-differencing

import processing.video.*;

int numPixels;
int[] previousFrame;
Capture video;

void setup(){
  size(640, 480); // Change size to 320 x 240 if too slow at 640 x 480
  video = new Capture(this, width, height, 24);
  numPixels = video.width * video.height;
  // Create an array to store the previously captured frame
  previousFrame = new int[numPixels];
}

void draw() {
  if (video.available()) {
    // When using video to manipulate the screen, use video.available() and 
    // video.read() inside the draw() method so that it's safe to draw to the screen
    video.read(); // Read the new frame from the camera
    video.loadPixels(); // Make its pixels[] array available

    int movementSum = 0; // Amount of movement in the frame
    loadPixels();

    for (int i = 0; i < numPixels; i++) { // For each pixel in the video frame...


